3.717 \(\int \frac{x^5}{\sqrt [3]{a+b x^3} (c+d x^3)} \, dx\)

Optimal. Leaf size=168 \[ -\frac{c \log \left (c+d x^3\right )}{6 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} d^{5/3} \sqrt [3]{b c-a d}}+\frac{\left (a+b x^3\right )^{2/3}}{2 b d} \]

[Out]

(a + b*x^3)^(2/3)/(2*b*d) + (c*ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]])/(Sqrt[3]
*d^(5/3)*(b*c - a*d)^(1/3)) - (c*Log[c + d*x^3])/(6*d^(5/3)*(b*c - a*d)^(1/3)) + (c*Log[(b*c - a*d)^(1/3) + d^
(1/3)*(a + b*x^3)^(1/3)])/(2*d^(5/3)*(b*c - a*d)^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.161212, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {446, 80, 56, 617, 204, 31} \[ -\frac{c \log \left (c+d x^3\right )}{6 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} d^{5/3} \sqrt [3]{b c-a d}}+\frac{\left (a+b x^3\right )^{2/3}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[x^5/((a + b*x^3)^(1/3)*(c + d*x^3)),x]

[Out]

(a + b*x^3)^(2/3)/(2*b*d) + (c*ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]])/(Sqrt[3]
*d^(5/3)*(b*c - a*d)^(1/3)) - (c*Log[c + d*x^3])/(6*d^(5/3)*(b*c - a*d)^(1/3)) + (c*Log[(b*c - a*d)^(1/3) + d^
(1/3)*(a + b*x^3)^(1/3)])/(2*d^(5/3)*(b*c - a*d)^(1/3))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 56

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[-((b*c - a*d)/b), 3]}, Simp
[Log[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(
1/3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && Ne
gQ[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^5}{\sqrt [3]{a+b x^3} \left (c+d x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{\sqrt [3]{a+b x} (c+d x)} \, dx,x,x^3\right )\\ &=\frac{\left (a+b x^3\right )^{2/3}}{2 b d}-\frac{c \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a+b x} (c+d x)} \, dx,x,x^3\right )}{3 d}\\ &=\frac{\left (a+b x^3\right )^{2/3}}{2 b d}-\frac{c \log \left (c+d x^3\right )}{6 d^{5/3} \sqrt [3]{b c-a d}}-\frac{c \operatorname{Subst}\left (\int \frac{1}{\frac{(b c-a d)^{2/3}}{d^{2/3}}-\frac{\sqrt [3]{b c-a d} x}{\sqrt [3]{d}}+x^2} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 d^2}+\frac{c \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt [3]{b c-a d}}{\sqrt [3]{d}}+x} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 d^{5/3} \sqrt [3]{b c-a d}}\\ &=\frac{\left (a+b x^3\right )^{2/3}}{2 b d}-\frac{c \log \left (c+d x^3\right )}{6 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 d^{5/3} \sqrt [3]{b c-a d}}-\frac{c \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}\right )}{d^{5/3} \sqrt [3]{b c-a d}}\\ &=\frac{\left (a+b x^3\right )^{2/3}}{2 b d}+\frac{c \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} d^{5/3} \sqrt [3]{b c-a d}}-\frac{c \log \left (c+d x^3\right )}{6 d^{5/3} \sqrt [3]{b c-a d}}+\frac{c \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 d^{5/3} \sqrt [3]{b c-a d}}\\ \end{align*}

Mathematica [C]  time = 0.0203736, size = 69, normalized size = 0.41 \[ -\frac{\left (a+b x^3\right )^{2/3} \left (b c \, _2F_1\left (\frac{2}{3},1;\frac{5}{3};\frac{d \left (b x^3+a\right )}{a d-b c}\right )+a d-b c\right )}{2 b d (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/((a + b*x^3)^(1/3)*(c + d*x^3)),x]

[Out]

-((a + b*x^3)^(2/3)*(-(b*c) + a*d + b*c*Hypergeometric2F1[2/3, 1, 5/3, (d*(a + b*x^3))/(-(b*c) + a*d)]))/(2*b*
d*(b*c - a*d))

________________________________________________________________________________________

Maple [F]  time = 0.04, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{5}}{d{x}^{3}+c}{\frac{1}{\sqrt [3]{b{x}^{3}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(b*x^3+a)^(1/3)/(d*x^3+c),x)

[Out]

int(x^5/(b*x^3+a)^(1/3)/(d*x^3+c),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.70199, size = 1497, normalized size = 8.91 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="fricas")

[Out]

[-1/6*((b*c*d^2 - a*d^3)^(2/3)*b*c*log((b*x^3 + a)^(2/3)*d^2 - (b*c*d^2 - a*d^3)^(1/3)*(b*x^3 + a)^(1/3)*d + (
b*c*d^2 - a*d^3)^(2/3)) - 2*(b*c*d^2 - a*d^3)^(2/3)*b*c*log((b*x^3 + a)^(1/3)*d + (b*c*d^2 - a*d^3)^(1/3)) - 3
*sqrt(1/3)*(b^2*c^2*d - a*b*c*d^2)*sqrt(-(b*c*d^2 - a*d^3)^(1/3)/(b*c - a*d))*log((2*b*d^2*x^3 - b*c*d + 3*a*d
^2 - 3*sqrt(1/3)*(2*(b*c*d^2 - a*d^3)^(2/3)*(b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*(b*c*d - a*d^2) - (b*c*d^2 -
 a*d^3)^(1/3)*(b*c - a*d))*sqrt(-(b*c*d^2 - a*d^3)^(1/3)/(b*c - a*d)) - 3*(b*c*d^2 - a*d^3)^(2/3)*(b*x^3 + a)^
(1/3))/(d*x^3 + c)) - 3*(b*c*d^2 - a*d^3)*(b*x^3 + a)^(2/3))/(b^2*c*d^3 - a*b*d^4), -1/6*((b*c*d^2 - a*d^3)^(2
/3)*b*c*log((b*x^3 + a)^(2/3)*d^2 - (b*c*d^2 - a*d^3)^(1/3)*(b*x^3 + a)^(1/3)*d + (b*c*d^2 - a*d^3)^(2/3)) - 2
*(b*c*d^2 - a*d^3)^(2/3)*b*c*log((b*x^3 + a)^(1/3)*d + (b*c*d^2 - a*d^3)^(1/3)) + 6*sqrt(1/3)*(b^2*c^2*d - a*b
*c*d^2)*sqrt((b*c*d^2 - a*d^3)^(1/3)/(b*c - a*d))*arctan(sqrt(1/3)*(2*(b*x^3 + a)^(1/3)*d - (b*c*d^2 - a*d^3)^
(1/3))*sqrt((b*c*d^2 - a*d^3)^(1/3)/(b*c - a*d))/d) - 3*(b*c*d^2 - a*d^3)*(b*x^3 + a)^(2/3))/(b^2*c*d^3 - a*b*
d^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{5}}{\sqrt [3]{a + b x^{3}} \left (c + d x^{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(b*x**3+a)**(1/3)/(d*x**3+c),x)

[Out]

Integral(x**5/((a + b*x**3)**(1/3)*(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.23869, size = 347, normalized size = 2.07 \begin{align*} \frac{\frac{2 \, b c d \left (-\frac{b c - a d}{d}\right )^{\frac{2}{3}} \log \left ({\left |{\left (b x^{3} + a\right )}^{\frac{1}{3}} - \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}} \right |}\right )}{b c d^{2} - a d^{3}} + \frac{6 \,{\left (-b c d^{2} + a d^{3}\right )}^{\frac{2}{3}} b c \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x^{3} + a\right )}^{\frac{1}{3}} + \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}}}\right )}{\sqrt{3} b c d^{3} - \sqrt{3} a d^{4}} - \frac{{\left (-b c d^{2} + a d^{3}\right )}^{\frac{2}{3}} b c \log \left ({\left (b x^{3} + a\right )}^{\frac{2}{3}} +{\left (b x^{3} + a\right )}^{\frac{1}{3}} \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}} + \left (-\frac{b c - a d}{d}\right )^{\frac{2}{3}}\right )}{b c d^{3} - a d^{4}} + \frac{3 \,{\left (b x^{3} + a\right )}^{\frac{2}{3}}}{d}}{6 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="giac")

[Out]

1/6*(2*b*c*d*(-(b*c - a*d)/d)^(2/3)*log(abs((b*x^3 + a)^(1/3) - (-(b*c - a*d)/d)^(1/3)))/(b*c*d^2 - a*d^3) + 6
*(-b*c*d^2 + a*d^3)^(2/3)*b*c*arctan(1/3*sqrt(3)*(2*(b*x^3 + a)^(1/3) + (-(b*c - a*d)/d)^(1/3))/(-(b*c - a*d)/
d)^(1/3))/(sqrt(3)*b*c*d^3 - sqrt(3)*a*d^4) - (-b*c*d^2 + a*d^3)^(2/3)*b*c*log((b*x^3 + a)^(2/3) + (b*x^3 + a)
^(1/3)*(-(b*c - a*d)/d)^(1/3) + (-(b*c - a*d)/d)^(2/3))/(b*c*d^3 - a*d^4) + 3*(b*x^3 + a)^(2/3)/d)/b